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a b s t r a c t

The knowledge of the real time traffic flow status in each segment of a whole road network in a
city or area is becoming fundamental for a large number of smart services such as: routing, planning,
dynamic tuning services, healthy walk, etc. Rescue teams, police department, and ambulances need
to know with high precision the status of the network in real time. On the other hand, the costs to
obtain this information either with direct measures meant to add instruments on the whole network or
acquiring data from international providers such as Google, TomTom, etc. is very high. The traditional
modeling and computing approaches are not satisfactory since they are based on many assumptions
that typically are doomed to change over time, as it occurs with traffic distribution at junctions; in
short they cannot cover the whole network with the needed precision. In this paper, the above problem
has been addressed providing a solution granting any traffic flow reconstruction with high precision
and solving the indeterminacy of traffic distribution at junctions for large networks. The identified
solution can be classified as a stochastic relaxation technique and resulted affordable on a parallel
architecture based on GPU. The result has been obtained in the framework of the Sii-Mobility national
project on smart city transport systems in Italy, a very large research project, and it is at present
exploited in a number of cities/regions across Europe and by a number of research projects (Snap4City,
TRAFAIR) of the European Commission.

© 2020 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND
license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Often, the traffic flow estimation is related to the monitored
rea in terms of short-term traffic flow prediction on fixed points
nd thus no information is provided in the roads where sen-
ors have not been located [1–5]. The usage of large number of
raffic sensors can help on estimating directly the traffic flow
n the whole city, but costs would not be affordable. On the
ther hand, the knowledge of traffic flow/density in real time
nd along almost all roads can be crucial for: (i) route planning
or private services, rescue teams, ambulances, fire brigades, etc.;
ii) decision taking to support intelligent transport system for
raffic reshaping, with the aim of preventing and/or reducing
ongestions, regulating traffic lights at intersections, etc.; (iii)
rediction and analysis about the production of pollutants such
s NOx [6]; (iv) the definition of sustainable mobility strategies,
lanning urban mobility services, etc.
The Traffic Flow Reconstruction is the process to produce a

value of traffic density (flow) – e.g., vehicle per meter (vehicles
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per second) – for each road (or road segment, or a large number
of road segments) by starting from a limited number of traffic
sensors measuring traffic density (flow) in the road. The measures
of traffic density are typically obtained by stationary sensors on
strategic positions of different kinds. For example, at the intersec-
tions and/or on the road far from the intersection when vehicles
are moving with a regular velocity.

A different approach can be based on extracting traffic density
from the velocity of the moving vehicles (private cars, public
buses, taxi, etc.). In fact, the OBU (on board units) and/or mobile
devices can be endowed of a Global Positioning System (GPS) [7].
Similar data could be obtained by insurance assistance boxes.
They can be regarded as mobile sensors, see [8,9], where Kalman
filtering has been used to produce a more regular solution reduc-
ing noise and discontinuities. In most cases, the user engagement
(at least to signify his/her assent) is needed to collect vehicles
trajectories and velocity data from moving vehicles, as in [10].
Thus, once trajectories are known, it becomes also possible to
compute origin–destination (OD) matrices [11]. Similarly, typical
vehicle trajectories and velocity data can be obtained from the
navigators installed on vehicles (if they are connected to the
network to get updates and also for communication purposes)
or on mobile Apps (e.g., TomTom, Google map, Waze, Here).
Solutions aimed at fusing the different kinds of data sources have
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been proposed, as well [12]. Mobility strategists of cities acquire
traffic flow data from companies and insurances, which provide
typical traffic flow data in fixed daily time slots for all the major
road segments of the city. Those data are in most cases computed
as an average of the values in the time slot, because the data
coming from navigators are also scattered and affected by errors
due to a personal driving style and individual needs.

In general, to set up a network of traffic flow sensors in a
city drastically avoids the costs of taking updated data from third
parties. For the sustainability, the number of deployed sensors
has to be limited and thus to exploit traffic flow reconstruction
solutions to obtain the value of traffic flow in the unmeasured
road segments is mandatory to have a global view of traffic city
conditions. Thus, in certain cases, a network area as freeways
or rings, where incoming and outcoming roads have a limited
number of elements, is monitored by consider traffic flow sensors
as in [13–15]. When traffic flow sensors are available, traffic flow
reconstruction is performed by using different computational ap-
proaches; typically by adding a number of additional constraints
to produce realistic solutions from very scattered data sources,
producing noisy data with discontinuous data in space and time.

The problem of the traffic flow reconstruction described above
s also regarded as the solution of the LWR (Lighthill–Whitham–
ichards) model [16,17]; which is modeling the traffic density
n terms of Partial Differential Equation (PDE). The solution of
he LWR model is not a trivial matter for large networks due
o its computational complexity and constraints [18–20]. The
stimation of the traffic distribution on junctions plays a crucial
ole on the effectiveness of the LWR model application in real
ontext. Many studies have focused on the mathematical aspects
oncerning the solution at the junctions in the theory of LWR
odel [18,21,22]. On the other hand, the current literature is
uite poor about the parameter estimation applied to the traffic
unctions in terms of percentage of vehicles getting out each
utcoming road with respect to those getting in each incoming
oad, so as to simulate realistic scenarios by using LWR model. In
eneral, when a model has been applied on large road network,
uch a percentage at the junctions has been assumed constant or
redefined [23,24].
Actually, vehicle behavior changes along the day and the ef-

ectiveness of any applied model can be negatively influenced by
ssuming as fixed the parameters involving traffic distribution
t the junctions. In order to compute more precise models, the
raffic distribution at the junctions should be not assumed as
onstant or predefined. A large part of literature has studied
nly small road-segments where the behavior is known at a
ignalized traffic intersection, since a control sensor is installed
er arm and the estimation of the distribution is given [25–
7]. The most widespread solutions for macroscopic models are:
he Cell Transmission Model (CTM) [23], and approaches based
n queues and on the principle of vehicle conservation [24]. As
tated in [27], the CTM is likely to be the most precise, but prob-
ematic also for its complexity on large traffic networks, because
he junction has to be divided into a large grid of cells. The
istribution at junction is part of the wider problem of traffic flow
econstruction by using a limited number of control sensors. The
roblem becomes more difficult when such sensors are installed
ar from the traffic intersection as it occurs in the cases this
aper copes with. This problem is also wider and more complex
athematically and computationally. Therefore, a parallel solu-

ion could make it easier to compute for the LWR model applied
o a large urban network where parameter estimation on traffic
istribution at the junctions is needed. In the literature, several
artitioning algorithms, along with their strengths and weak-
esses for various PDE applications have been reviewed in [28].

or example, some preliminary studies can be seen in [29,30]
where concepts are applied to a small number of roads (or a
single road), to make it computationally affordable. In a recent
study [31], a deep learning neural model has been presented for
the prediction of traffic conditions from probe vehicles within
car-navigator involving the implementation of parallel structures
by innovative instruments like TensorFlow. Also, some studies
have been carried out in [32] where a (unreal-world) simpli-
fied urban-road network is developed for Parallel-transportation
management system applications.

1.1. Aim of the paper and its overview

In this paper, a solution is presented for computing traffic flow
reconstruction by solving the indeterminacies about traffic flow
distribution at junctions. The solution we proposed addresses
at the same time (i) the traffic flow reconstruction by solving
PDE; (ii) the estimation of traffic flow distribution at junctions
with a solution that can be classified as a stochastic relaxation
technique by means of a meta-heuristic approach; (iii) the real
time computation of (i) and (ii) in large road networks exploiting
tensor flow modeling and GPU; (iv) the identification of the error
function in traffic flow reconstruction, thus demonstrating its re-
lation with road network features. The result has been produced
in the framework of Sii-Mobility, the Italian national research
project on mobility and transport for smart city funded by the
national Ministry of research (http://www.sii-mobility.org). This
is a 4 years national project involving research centers and indus-
tries. The algorithms have been put in execution by exploiting the
Km4City data aggregator and its semantic model (https://www.
km4city.org) [33,34]. The solution is at present exploited in a
number of research projects such as Snap4City [35], TRAFAIR [6],
RESOLUTE [36], and in a number of cities: Firenze, Pisa, Livorno,
Modena, Santiago di Compostela, see the dashboard accessible
online on the Snap4City open service https://www.snap4city.org/
dashboardSmartCity/view/index.php?iddasboard=MTc5NQ==

The paper is structured as follows. In Section 2, the math-
ematical model for traffic flow is presented, addressing road
network and traffic junctions. Section 3 presents the solution for
traffic flow reconstruction with first approximation on junction
distribution. In Section 4, the complete computational solution is
presented, while addressing also the computing of the so-called
Traffic Distribution Matrices that model the distribution of traffic
flow at junctions. In the same section details about the adopted
parallelization approach are reported. Section 5 presents the error
analysis which allowed us to assess the solution precision and
to identify the dependency of the error estimation on the road
network topology in terms of road network betweenness and
eccentricity. In Section 6, such experimental results have been
reported, thus providing evidence of a real time performance
obtained in computing the solution. The above reported URL to
dashboard is accessible and allows a real-time verification on the
solution validity. Conclusions are drawn in Section 7.

2. Modeling traffic flow

The traffic flow in road networks can be modeled by using
a fluid dynamics model of vehicular traffic as in [18]. It is the
so called LWR PDE model and equation. The nonlinear model is
based on the conservation of vehicles described by the following
scalar hyperbolic conservation law:
∂ρ (t, x)

∂t
+

∂ f (ρ (t, x))
∂x

= 0, (1)

where: ρ (t, x) is the traffic density of vehicles, which admits val-
ues from 0 to ρmax, where ρmax > 0 is the maximal traffic density;
f ρ(t, x) function is the vehicular flux which is defined by means
( )

http://www.sii-mobility.org
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of the product ρ (t, x) v (t, x), where v (t, x) is the vehicle speed;
and boundary conditions ρ (t, a) = ρa(t), ρ (t, b) = ρb(t), initial
values ρ (0, x) = ρ0(x), with x ∈ (a, b). In the case of first order
approximation, we assume that v (t, x) is a decreasing function,
depending on the density, then the corresponding flux is a con-
cave function. Thus, we consider the local speed of the vehicles as
v (ρ) = vmax(1−

ρ

ρmax
) and then f (ρ) = vmax

(
1 −

ρ

ρmax

)
ρ, where

max is the limit speed on a given road segment.
Eq. (1) can be considered valid only when the hypothesis of

he conservation of flow is satisfied at each time instant. The
onservation can be verified by counting the inflow and outflow
ehicles of the considered area in the time slice, for example
n 15 min. Thus, the condition can be also generally applied, by
nowing the value of the flow at the border, see for example [8].
nd the flow at the border of the area can be measured by traffic
low sensors. So that, the traffic flow at a given time instant of a
oad network consists of the values of the traffic density in each
oint of the network, which is obtained by solving equation (1),
hat is the so called traffic flow reconstruction.

.1. Solving traffic flow equation

Let u be the solution of Eq. (1). The discretization of (1) at
inite difference for the evolution of the traffic density in each
oad which is composed by a time–space region (h,m), can be
ormalized as:

h+1
m = uh

m −
∆t
∆x

(
F

(
uh
m, uh

m+1

)
− F

(
uh
m−1, u

h
m

))
, (2)

where F denotes the flux, which is computed by taking into
account the physical constraints of the selected road and its
connections to the neighbor road-segments according to:

F (w, z) =

⎧⎪⎨⎪⎩
min (f (w) , f (z)) , w ≤ z

f (w), z < w < ρc
fmax, z < ρc < w

f (z), ρc < z < w

here fmax denotes the maximum value for the vehicular flux
ermitted in the selected road and such a value is considered
hen the vehicular density assumes its critical value ρc which
epends on the capacity of the given road.
In order to set up the finite difference scheme in a complex

oad network, boundary conditions at the border of the area and
onditions at the junctions regarding traffic distribution have to
e imposed. That is, provided that the conservation of flow and
oundaries conditions are satisfied, the solution of Eq. (1) on large
etwork of roads is not a trivial matter due to the presence of
i) several and topologically diverse intersections/junctions with
nknown behavior (distribution of flow over time), (ii) unknown
n the data regarding flow density in all segments of the network,
igh noise and discontinuities in the measures, thus resulting in a
iii) high computational complexity. In fact, several thousands of
oad segments and several hundreds of junctions can be present
ven in small cities with 100.000 inhabitants. Therefore, most of
he applications based on Eq. (1) are based on discrete numerical
olutions at finite differences [19,20], and they are applied on
pecific configurations for junctions, small networks and dense
ata. In [8], Kalman filtering has been used to cope with noise
odeling/reduction and the presence of small discontinuities due

o the lack of data/measures coming from sensors.

.2. Road network and junctions

A road network is modeled as an oriented graph composed
y segments connected at nodes; nodes may be junctions where
ore than 2 roads meet. In a discretized version of the model,
road between two junctions can be regarded as composed by
series of units/segments of size ∆x. Similarly, the time can
e divided in time slots, of ∆t . The time–space region bounded
ithin a duration h and unit m is referred to as a cell and it is

denoted as (h,m); and the number of vehicles contained in unit
m at the end of duration h (at a given time instant) is denoted as
n (th, xm) = n (h∆t,m∆x). We also use notation uh

m for u (th, xm)

when u is a function on (t, x) plane. Moreover, the relationship
∆x
∆t > vmax is required in the discretization scheme, that is, a
vehicle should not cross more than one unit ∆xwithin a time step
∆t . On the other hand, this is not a strong restriction if the time
and space slots are too small with respect to the vehicle velocity
and size.

In order to model the traffic distribution at junctions, a distri-
bution matrix can be used to describe the percentage of vehicles
getting out each outcoming road with respect to those getting
in each incoming road. Thus, the Traffic Distribution Matrix (TDM)
an be defined as TDM = {wji}j=n+1,...,n+m,i=1,...,n so that 0 < wji <

and
∑n+m

j=n+1 wji = 1, for i = 1, . . . , n and j = n + 1, . . . , n + m,
here wji is the percentage of vehicles arriving from the ith

ncoming road and taking the jth outcoming road (assuming that,
n each junction, the incoming flux coincides with the outcoming
lux). The real values of wji may depend on the time of the day,
n the road size, cross light settings, etc., and thus, it is unknown
priori. In the following, wji coefficients are called weights.
TDM(t) over time is unknown, since the traffic flow is not mea-

ured in each inflow/outflow road of all junctions, in each time
lot t. A first approximation of the TDM(t) could be the typical
alues for TDM (t) in the day, for each day of the week. These
rends are an approximation, since the TDM(t) is conceptually
hanging at each time slot. Thus, the first approximation can be
roduced by means of a computation of typical trends at the
unctions over time, in the last period (for example, the last two
onths).

.3. Boundary conditions vs junctions

The boundary conditions occur at the border of the road net-
ork where some road segments have one of their nodes not
onnected to any junctions. For this purpose, considering the
odel of Eq. (1) without loss of generality, we assigned a con-
ition at the incoming boundary for x = 0 as ρ (t, 0) = ρ inc

b (t)
nd thus computing in that point the solutions of Eq. (1) only for
> 0. In practice, we proceed by inserting an ‘‘incoming ghost
ell’’ and the discretization becomes:

h+1
0 = uh

0 −
∆t
∆x

(
F

(
uh
0, u

h
1

)
− F

(
ρh
(inc), u

h
0

))
(3)

here:

h
(inc) =

1
∆t

∫ th+1

th

ρ inc
b (t)dt,

replaces the ‘‘ghost value’’ uh
−1. The same equation can be used

for segments where the measure of flow density is known. For
example, where sensors are located.

Of course, let x < N , for the outcoming boundary we can
consider a similar procedure leading to:

uh+1
N = uh

N −
∆t
∆x

(
F

(
uh
N , ρh

(out)

)
− F

(
uh
N−1, u

h
N

))
. (4)

As to the conditions at the road junctions and thus on TDM
aspects, the following discretization for roads connected to a
junction at the right and left endpoint is modeled, respectively:

uh+1
= uh

−
∆t (

γi − F
(
uh , uh ))

(5)
N N
∆x N−1 N
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uh+1
0 = uh

0 −
∆t
∆x

(
F

(
uh
0, u

h
1

)
− γj

)
, (6)

where: γi, γj are the incoming/outcoming flows such that γj ≃

wjiγi in accordance with the definition of the Traffic Distribution
Matrix. And thus, only if the traffic flow distribution at junctions
is known (TDM(t)), then a solution could be computed.

3. Traffic flow reconstruction

The traffic flow reconstruction consists of the estimation of
traffic density in each road segment of the network. This also
implies the knowledge of the TDM(t) at junctions over time.
In order to produce the traffic flow reconstruction, the model
formalized in the previous Section 2 has to be solved. The solution
of Eq. (1) on a real road network with several junctions presents
as unknowns both: (i) the traffic density in each road segment
and (ii) the TDM(t) weights for the junctions at each time slot.
In this section, we focused on solutions (1) to estimate a traffic
density (i) with some simple assumptions on (ii). On the other
hand, such simple assumptions could be improved, whenever a
more precise estimation of TDM(t) weights is addressed as com-
putational problem in Section 4. Please note that, the estimation
of TDM (t) weights in a road network on the basis of the actual
traffic has a value useful to understand traffic distribution, thus
tuning intersection red lights.

In addition, the solution has to take into account:

• road network details such as: (i) traffic restriction deter-
mined by vehicle kind for each road due to restricted traffic
zones, high speed roads; (ii) road flow direction; (iii) road
size in terms of lanes; (iv) road segment speed limit; (v)
constraints on U turns; etc. Those aspects mainly change the
capacity of the road segment.

• traffic density status, which may not be available in all
road segments. In fact, sensors may provide measures on
scattered points, as well as measures of velocity provided
by OBU and/or navigator, which may be affected by personal
needs and/or driving styles.

• boundary conditions in the computation of the density.
• conservation of flow in the general model and data, with

respect to road network area considered.

Please remind that, the solution of Eq. (1) should:

• allow to know the status of the traffic flow in all road
segments, with the above constraints, and despite the fact
that the measured traffic flow is only performed in a limited
number of points and with noisy conditions.

• be produced in real time; that means with a very small delay
after the last measure of the traffic flow sensors.

The traffic flow reconstruction in all road-segments is useful
for: route planning, traffic regulation, public service, anomaly
detection, prediction of certain pollutants. Thus, only by taking
into account of all the above-mentioned conditions the results
can be realistic with respect to the actual traffic experiences by
the users on the road.

Due to the above requirements, unknowns and constraints the
solution is highly computationally intensive both for a wide area
and a small city where it is easy to have some tens of thousands
of road segments and several hundreds of junctions.

Therefore, new method and solution have been identified and
initially implemented on a traditional multi-thread CPU based
computer, later a GPU based solution has been developed to

strongly reduce the execution time, as described in this paper.
Fig. 1. Schema of the computational approach.

In the present section, we describe the main computational
teps involving the traffic flow reconstruction model: in part A,
he parameters occurring in the TDM computation are presented,
art B describes how the traffic sensors data are inserted in the
odel, part C is focused on algorithm, part D describes the net-
ork graph structure and the traffic density computation on the
asis of equations of Section 2, part E is devoted to the graphical
epresentation of the resulting traffic flow. Fig. 1 describes the
chema of the computation.

.1. Traffic distribution matrix, TDM

When the traffic density is unknown and also the TDM(t) at
unctions is unknown, Eq. (1) is under-constrained, and may be-
ome solvable by using a large number of traffic density measures
ver time. Moreover, Eq. (1) is computable as stated in Section 2
aving at least a first approximation of TDM(t). To this end, the
eights of TDM(t) can be produced/guessed by: (i) taking into
ccount the relevance/size of the roads at the junctions, road-
egment type (motorway, trunk, primary, secondary, tertiary and
esidential), road-segments’ lane number, maximum flux permit-
ed in road-segments (by size), turn restrictions, restricted traffic
one, speed limit in road-segment, road-segment access restric-
ion, bidirectional traffic road-segments, presence of designated
anes for public transport, etc., (ii) taking into account the census
ata, as well as the attractions (monuments, events, etc.) in the
rea, (iii) measuring the typical trends of the traffic distribution
t the junctions in the last period (for example, for the last two
onths).

.2. Traffic sensors’ modeling

TV Cameras and spire road sensors are typically located on:
i) highway/main roads in the country side, (ii) main roads arriv-
ng/departing to/from a city, as well as in the main road leading
o the city, (iii) main junctions (recently this kind of sensors are
ess used since the traffic flow is influenced by red lights), (iv)
ain gates at Restricted Traffic Zone access points. Each sensor
ives the state of the traffic by counting the number of vehicles
for example, by vehicle kind) which pass through the supervised
rea and the data are simultaneously updated every time slot (for
xample every 5–10 min). Each traffic flow sensor presents static
nformation related to its geographical coordinates and assessed
low direction, number of observed lanes, etc. The integration
f traffic sensors in the road network graph corresponds to its
ssociation to road segment. So that, a tv-cam sensor may assess
raffic flows in both directions and on multiple lanes of that road
egment. For each time slot t, the traffic sensors can measure
raffic density in the road segment where they are located. In
articular, the measured traffic density ρM (t) is the value in the
utcoming roads of such segment. If the initial node of a road-
egment corresponds to the location of a sensor, then the problem
elated to the integration of data sensor in the graph is solved by
nserting the measured data ρ (t) (to be properly distributed if
M
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the node corresponds to a junction) in the corresponding road-
segment according to Eq. (3) where ρ (t, 0) = ρM (t). In particular,
a smoothing solution is given and the density value in the asso-
ciated segment passes from ρM (t) to ρM (t ′), being t the previous
time slot.

The traffic flow sensors can be considered a more precise
estimation of vehicular flow and traffic density with respect to
the measures produced by OBU or navigators which are mobile
measures and they can be taken into account in [8] in the LWR.
Traffic sensors are less affected by errors due to the higher num-
ber of vehicles used for the measures. For example, a navigator
could provide instantaneous velocity of a single vehicle which can
go spontaneously slow even being the only one in the road. Thus,
producing a wrong traffic density.

3.3. Basic computational approach

Therefore, if exploiting equation (1), and taking into account
the values of a relevant number of traffic flow sensors, it is
possible to infer the distribution of traffic in the rest of the
network and the weights of the TDM(t). Thus, having a road
network graph for a given area (including, road details, junctions,
sensors, and TDM(t)) becomes possible by means of a relaxation
method to estimate the traffic density in real-time, according to
the following steps:

For each time slot t, after H iterations all the road-segments
in the road network have an estimated traffic density value. In
the following, details of the computational steps of the mentioned
algorithm are described, including the computing of the number
of H iterations which is most suitable to minimize errors, see
Section 5.

3.4. Traffic density computing

Each road segment with its attributes (such as: number of
lanes, restrictions, kind of road, etc.), provides a max limit of
traffic density (and flux), that is defined in terms of vehicular
capacity. According to Section 2.2, a bi-dimensional density array
of size h ∗ s is associated with each road having s units and
the value in the (h,m)-th cell representing the estimated traffic
density in the mth unit of a road-segment at the duration h,
(time instant h∆t) with 1 ≤ m ≤ s. The density array is
partitioned in L units according to the length of the road-segment
tself. The value in each unit is computed at the finite difference
ccording to Section 2. In the following, we give some details
bout such a procedure which depends on both the position the
nit assumes in the density array and the role played by the
ssociated road-segment in the road network.
Every time, measures collected by sensors are updated

considered, the traffic density value is propagated from the road-
egments where sensors are located, by applying to the first unit
 r
of the associated density arrays the procedure described in the
part B of the present section.

If a road-segment is located on the border of the road net-
work, then we distinguish two cases depending on the direction
of the road-segment with respect to the graph. If the road-
segment represents an incoming edge of the graph, then the
first unit of the associated density array is computed according
to Eq. (3) where a bounding value or ‘‘ghost-value’’ is introduced
(such value can be interpreted as a ‘‘ghost-sensors’’ in the graph).
Otherwise, if the road-segment represents an outcoming edge of
the graph, then the last unit of the associated density array is
computed according to Eq. (4).

Generic road-segments are not placed in the graph border
nd they do not host any sensor, so they represent both an
ncoming road-segment in its end node and an outcoming road-
egment from its initial node. Therefore, the first unit of the
ssociated density value is computed according to Eq. (6) while
he last one is computed according to Eq. (5). Of course, such
omputation depends strongly on weight assignment since it de-
ermines the turn percentage and related traffic (flux) distribution
n the junction.
Finally, for each road-segment having more than 2 units, all

he units which differ from the first and the last are computed
ccording to Eq. (2).
At the next time slot, a new measurement is obtained and the

escribed procedure of Section 3.3 is repeated for a number H of
iterations (a method to determine H is described in the sequel)
in order to evolve the system.

3.5. Computing graphical representation

The traffic density of each segment can be represented on the
map with a line for each road segment. To this end, specific GPS
coordinates for each unit have to be maintained. Typically, the
density network is depicted by using a color coding for traffic
density ranges. Then, the graphical representation of the road
network on the map is depicted (see Fig. 2 that is accessible
online as https://www.snap4city.org/dashboardSmartCity/view/
index.php?iddasboard=MTc5NQ== for the graphical representa-
tion of the model running in real-time in some of the cities/areas
where it has been applied), and updated at each new value of the
traffic sensors, namely every 10 min in this case.

4. Estimating traffic distribution matrixes

In Section 3, the computational model to perform the traffic
flow reconstruction has been presented, by assuming the knowl-
edge of junction weights (addressing both those with and without
traffic lights).

The values of junction weights should be estimated on the
basis of actual traffic behavior in the city since, any approximated
values, computed as described in Section 3.1, may be affected by
relevant errors. A solution for their computation has been pro-
posed in [37] and [38], where the estimation has been performed
by reaching a general error of 25% and using a stochastic method
as described hereafter. The aim was to estimate the TDM (t)
weights for a given time slot t. The weight assignment contains all
the weights wji at time t of the junctions in the road network. The
pproach for weight estimation was iterative and started from
rbitrary values minimizing the error percentage of traffic density
n selected points where such density is known, as they are the
ensor locations. If the number of sensors is high, the approach
s viable, while the reference sensors should be carefully chosen.
n [38], the identified sensors have been inside the related area of
nterest of the road network. In fact, selecting sensors along the

oad network border for validation purposes would not be a good

https://www.snap4city.org/dashboardSmartCity/view/index.php?iddasboard=MTc5NQ==
https://www.snap4city.org/dashboardSmartCity/view/index.php?iddasboard=MTc5NQ==
https://www.snap4city.org/dashboardSmartCity/view/index.php?iddasboard=MTc5NQ==
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choice since they are subject to boundary conditions, thus making
the relaxation of computation process not effective in those cases.
Moreover, as discussed in Section 5, error distribution for general
Traffic Flow Reconstruction depends on the topological structure
of the road network; on such grounds, the selection of reference
sensors is very responsive, and not only the internal sensors in
the road network could be eligible for error minima.

The valuable part of the solution in [38] included a com-
putational approach based on stochastic relaxation similar to a
simulated annealing with random production of values, to re-
duce the probability of an immediate stop in a local minimum.
The procedure identifies a number of road-junction-weights of
TDM(t) (as described above or in the whole network) and ran-
domly assigns values to them in a reasonable range depending
on road type (residential, tertiary, secondary, primary, trunk and
motorway). Then, at each iteration, if the local error is lower
than the previous one, then the assigned weights are confirmed.
The procedure continues in assigning random values on other
road-junction weights until a general error is minimized when no
other improvement can be obtained despite a relevant number
of new iterations; the procedure converged on reasonable con-
figurations [38]. The ranges assigned to the different road type
were not overlapped. The residential road type had a range from
5 to 14, the tertiary road type from 15 to 29, the secondary road
type from 30 to 49, the primary road type from 50 to 69, etc.
In the present work such ranges admit overlapping in order to
extend their cardinalities and effective changes in the road kinds
according to their effective usage.

Such procedure can compute the weights for a number of T
periods of the day taking into account the actual values of traffic
flow sensors in the time slots. We define the weight assignment
TDMb(T ) as the weight assignment giving the lower mean error in
the period T. Then, in real-time prediction we assign TDM (t) =

TDMb(T ) for each t in T.
Despite the effective results obtained for the estimation of

DM(t), the solution is very computationally heavy, and thus the
rocedure can be executed only sporadically for the estimation
f weights, while reducing as much as possible the number of
ime slots and cases which TDM(t) weights are computed for. For
example, on computer with 20 cores at 2.20 GHz, the estimation
for a road network with 31217 road elements (units ∆x) takes
about 20 days for the relaxation process of the weight estimation
(60 s for the error estimation of only one sensor setting H = 100,
0 controlled sensors, 600 weight assignments). On the other
and, the same process has to be performed at least (i) for each
ime slot of the day, (ii) for working and weekend days, since
he traffic behavior is very different. Therefore, multiplying the
omputational time for 3 cases (working days, Saturday, Sunday)
nd 48 time slots of the day (every 30 min), about 2880 days
hould be needed to estimate weights.
For these reasons, the activity has been focused on reducing

he execution time by using a parallel solution on GPU. It should
e noted that the computation of TDM(t) weights by means of the

above described approach based on error verification implies the
computation of the solution of Eq. (1) and thus we are presenting
a complete parallel solution for solving Equation (1) and TDM(t)
eight estimation (see Section 6 for the experimental results and
omparisons of the parallel solution in terms of computational
ime).

.1. Parallel solution overview

In this section, we introduce an original method to improve
he computational performance involving suitable data structures
or road network representations. A such innovative paralleliza-
ion approach is applied to both the calculus of the density arrays
able 1
umerical computation with respect to the position of the units inside a density
rray.
Units’ position Numerical method

First unit at the sensors’ location Eq. (3) with sensor measurement
First unit at the bound of the graph Eq. (3) with no sensor measurement
Last unit at the bound of the graph Eq. (4)
First unit inside the graph Eq. (6)
Last unit inside the graph Eq. (5)
Internal units Eq. (2)

and the estimation of the TDM(T ). Please note that the TDM(T )
constitutes an input data for the estimation of density arrays, so
hey are not independent processes. On one hand, the computa-
ion of the density arrays seems to be quite straight forward being
ubstantially a finite difference iterative solution of a PDE. On
he other hand, the computing of TDM(T ) is much more complex
ince it is based on an iterative stochastic relaxation algorithm.
A GPU based parallel architecture has been selected for the

xecution of solutions such as a GPU NVIDIA Titan XP. It is a
IMD machine that can execute the same instructions on multiple
rocessing units at the same time. The two cases calculus of
he density arrays and the estimation of the TDM(T ) have to be
hreaded separately.

.2. Parallel computation of density arrays

To this aim, the data model has to be prepared in a suitable
anner, thus allowing the calculus of the density arrays equa-

ions simultaneously at each iteration and time stamp, since they
re independent each other. In fact, the equations from (2) to (6)
ave to be applied according to different road network element
onfiguration as summarized in Table 1, where at each equation
label has been assigned; this label has been used to execute
ifferent equation in different processing units at the same time.
t seems to be like a sort of WHERE construct of many parallel
rogramming languages.

.3. Data model for TDM computation

The description of each junction configuration represents a
tatic information. The density values involving the traffic dis-
ribution admit a fixed placement and they are computed with
qs. (5) and (6), respectively. Events involving the distribution at
he nodes are necessarily independent one another. The junction
onfiguration can be very different one another. Let I and O
e maximal number of incoming and outcoming road-segments,
hen it is possible to create a comprehensive TDM data model
aximizing the model and creating V TDMmatrices of dimension
×I , where V is the number of junctions in the network. If a junc-
ion presents a lower number of in/outs, the non-considered will
e zeroed. Analogously, the other objects involving the calculus
f the traffic distribution at the junctions can be similarly defined,
btaining V independent computations, called slides. The basis of
he parallelization approach is grounded on the simultaneously
omputing of such slides.

.4. Parallel computing of TDM, junction weights

In the proposed parallel solution, the stochastic approach for
omputing TDM weights is based on the computation of the
odel excluding the data from a number of selected sensors
t each error computation. The solution can be classified as a
tochastic relaxation technique and differs from the one proposed
n [38] thanks to parallel implementation and error computing,
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Fig. 2. Graphical representation of the real time traffic flow reconstruction in
ifferent cities and areas (on the top left corner the cities/areas selection is
rovided). Blue points mark the position of the sensors and the state of traffic
n each street is represented by different colors. The reconstruction is based on
he solution proposed in this paper. . (For interpretation of the references to
olor in this figure legend, the reader is referred to the web version of this
rticle.)

hus producing significantly better results as highlighted in Sec-
ion 5. More precisely, for each time t the error is computed on
the basis of the calculated traffic density ρc(t) in those sensor
positions with respect to the traffic density value ρM (t) measured
by the sensors. The formal model of the error is reported in
Section 5 where an Error Analysis of the whole solution is carried
out.

The computation of the TDM(T ) is performed computing a
value every 30 min in the day, for the 7 days of the week.

The effectiveness of the proposed computational model is
related to the number of iterations H computed by the algorithm.
In particular, the number of iterations has to be sufficient to
allow the iteration process to minimize errors of estimation in
the destination arrays. An insufficient number of iterations may
lead to an inaccurate propagation of the traffic flow in the city
graph. When the same computation is used for producing the
traffic flow reconstruction in real time, the execution of the H
iterations has to be completed before the arrival of the next traffic
flow measures from sensors.

5. Traffic flow reconstruction error analysis

A deeper analysis of the results to be achieved by the solution
we presented can be obtained by assessing the resulted traffic
flow reconstruction during the real-time execution in order to
understand: (i) identification of the most suitable number of iter-
ations H, (ii) solution accuracy, (iii) if the error in reconstruction
depends on structural parameters of the urban network.

The assessment has been performed verifying in real-time
the conservation of the flow in the area. As depicted in Fig. 2,
sensors are located also at the border and thus change in the
conservation can be compensated by any knowledge of the flow
rebalancing the difference as in [8]. Fig. 3 reports the real-time
dashboard for controlling the conservation of flow. This Dash-
board belongs to the Smart City Control Room dashboard for
Florence Smart City [35]. Please note also the assessment of sen-
sor network coverage on the right side, bottom corner, accessible
to public from https://www.snap4city.org/dashboardSmartCity/
view/index.php?iddasboard=MTc2MQ== , the Fig. 3 reports only
a part of it.

For this purpose, we instrumented the above-presented pro-
cess to assess in real-time its precision and its trend. The inte-
grated solution starts from an assigned TDM(t) to perform the
traffic flow reconstruction in the road network and verify the
RMSE (root-mean-square-error) with respect to actual values in
Fig. 3. Control Dashboard of the real time conservation of traffic flow in
Florence taking into account border sensors. In the top, the first and the second
trends represent the hourly behavior of incoming and outcoming vehicle flow,
respectively. In the bottom, the monthly trends of the incoming/outcoming
behaviors are depicted.

sensor locations. This is performed by computing the solution
which excludes data from each different sensor (all of them), so as
to estimate the deviation from the calculated traffic density ρc(t)
in the road where the selected sensor is located, with respect
to the density ρM (t) measured by the sensor, for each time t .

At a given location the RMSE is estimated as
√

ΣT
t=1(ρc (t)−ρM (t))2

T ,
here T is the total number of observations. The RMSE is used
o measure error values when the perfect fit with the data is
ndicated by 0. Therefore, in the present context 0.5 represents
small error being a fraction of a vehicle in the space of 20 m (it

s an absolute value). For each round, the stochastic relaxation
roduced a minimum of the RMSE that has been taken as a
eference together with the produced TDM(t).

The accuracy of the solution primarily depends on the num-
er of iterations H which are applied to the execution. At each
teration the RMSE for each sensor has been measured and also
he so-called system RMSE, which is the average value of the
easured RMSE of all the sensors. Fig. 4 shows the trend of system
MSE with respect to number of iterations H. The computing has

been based on data observed every 10 min during the weeks
from January 20th (Monday) to February 9th (Sunday), i.e., 24 (h)
per 21 (days) to calculate the deviation of each computed traffic
density with respect to the measured density by sensors.

The System RMSE obtains the minimum error for H = 250. In
ig. 4, also the trends of RMSE of internal and external (boundary)
ensors (about the 74% and 26% of them, respectively) have been
eported. The RMSE of the internal sensor points continues to
educe with the number of iterations, while the RMSE for sensors
t the boundaries presents a minimum in the range of H from
50 to 250 depending on the sensors, this effect is due to the
oundary conditions and related discontinuities at the external
order of the road network. In those cases, the propagation of
orrect values can arrive only from internal values not having
ther sensors far away (they are the external sensors in the
etwork). Therefore, a compromise number of H = 250 has been

taken, as obtained by minimizing System RMSE. Observing the
data, the RMSE turned out to be not uniform for all the locations
of city sensors, as expected. Thus, other criteria could be also

taken, for example the minimization of the errors in specific

https://www.snap4city.org/dashboardSmartCity/view/index.php?iddasboard=MTc2MQ==
https://www.snap4city.org/dashboardSmartCity/view/index.php?iddasboard=MTc2MQ==
https://www.snap4city.org/dashboardSmartCity/view/index.php?iddasboard=MTc2MQ==
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Fig. 4. The RMSE trends with respect to the iterations number H in the traffic
flow reconstruction are shown. The average RMSE trend of the internal sensors
is represented by the blue line, the average RMSE trend of the external sensors
is represented by the orange line. In gray is reported the System RMSE having
its minimum when H = 250. . (For interpretation of the references to color in
this figure legend, the reader is referred to the web version of this article.)

Fig. 5. Distribution of RMSE estimations for each sensor location assuming that
the iteration number H is equal to 250.

oints of the road network, or even accepting a different number
f iterations for different parts of the city. This last solution is
articularly complex since would implies to stop the relaxation
f the solution, and not always produce better results.
In Fig. 5, the distribution of RMSE in the whole set of traffic

ensor road segments is reported for H = 250 (that is 130
sensors in Florence area, which has 2730 road-segments and 1390
junctions). Please note that the 90% of the total number of points
co-located on actual sensors have an RMSE value less than 0.5
(vehicles per 20 m). In the next part A of this Section, an analytical
study on the network properties of the urban graph is conducted
in order to give the evidence how the error is related to the
topological aspects of the network.

Moreover, the RMSE values are related to traffic conditions
and, in general, a greater RMSE value has been registered for high
traffic levels in the road network. Such relationship is depicted in
Fig. 6 where actual values from the sensors (in terms of number of
vehicles per 20 m) have been grouped to make a distribution and
to compute their mean RMSE value and the corresponding con-
fidence interval. The graph has been estimated by using 81500
measures performed on sensors during several weeks. The gray
band represents the confidence interval of RMSE values. Please
note that a larger band has been registered for critical values of
traffic density when some congestion situations are occurring.
Such trend seems to be related with the data coming from the
observed sensors’ behavior and their well-known fundamental
diagrams where congestions are examined.
Fig. 6. The relationship of the mean RMSE over the whole road network with
respect to actual values obtained by the sensors.

Fig. 7. (a) system RMSE over the daily time, it reflects the behavior in Fig. 3
where the hourly incoming/outcoming vehicle flow is depicted; (b) RMSE
Internal percentage (estimated as the RMSE of Internal sensors with respect
to the corresponding traffic density over time). This trend is coherent with the
linear trend described in Fig. 6.

Since traffic congestion in the city is typically related to the
city incoming/outcoming flow according to the working activities
of citizens, then also the RMSE value is affected to such behavior
in the day. In fact, Fig. 7a shows how the system RMSE depends
on daily time, and it reflects the typical behavior in terms of
incoming/outcoming flow in the whole city, see Fig. 3. This also
means that the traffic flow estimation at system level presents a
small error: in most cases lower than 0.2, that is a fraction of a
vehicle in the space of 20 m.

Please note that the RMSE is an absolute error measure with
respect to the traffic density. As depicted in Fig. 6, the RMSE is
higher when the traffic density is high, while the ratio from the
RMSE and the traffic density (actual values) is almost constant in
fact it can be regarded an approximated straight line. This fact
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can be also observed in Fig. 7b where only internal sensors are
taken into account.

5.1. Error estimation with respect to the road network topology

This section reports the analysis performed to understand how
the error in the traffic flow reconstruction is related to the road
network topology. Once a topological relationship is identified, it
could be possible to infer that a similar error would be produced
in other locations with the same topology and use. This fact can
be exploited for a better placement of the sensors and for a
general assessment of the data measured and represented in the
dashboards and thus in the applications showing the traffic flow
reconstruction results.

Each node of the road network may have a specific charac-
teristic in terms of relevance in the graph, regardless if it has
been used or not for the location of a sensor. The above presented
analysis has shown that the RMSE has a certain non-uniform
distribution, see Figs. 4 and 7, and a clear dependency on traffic
volume. Therefore, in order to characterize the error function over
the city structure and map, many features could be taken into
consideration, for example: the type of roads, the structure of
the city, the points of attractions, etc. After a long data analysis,
we discovered that error behavior is related to the topological
characteristics of the road network, as described below.

The traffic flow reconstruction depends on the constraints
related to the road network which is modeled as a directed
graph. The network analysis tools can help to describe topological
features. We tested a large number of them, and in particular
two of them turned out to be related with the error behavior of
sensors, that is, betweenness and eccentricity [39].

The vertex betweenness (also known as betweenness centrality)
of a node v is the number of shortest paths which pass through
v, formally we have

b(v) =

∑
i̸=j,i̸=v,j̸=v

givj/gij

here gij is the total number of the shortest paths from node i
to node j and givj is the number of those paths passing-through
v. The vertex betweenness represents the degree to which nodes
stand between each other and it measures the extent to which
a vertex lies on paths between other vertices. Nodes having
high betweenness may have considerable influence within a road
network by virtue of their control over traffic data passing be-
tween others. Such nodes are also the ones whose removal from
the network will most disrupt communications between other
vertices, because they lie on the largest number of paths inside
the network. The betweenness centrality has been demonstrated
to be related to the traffic flow in [40] with an R squared of 0.68
and yet such capability has not been exploited in relationship
with the error of traffic flow reconstruction. The correctness of a
given information which goes through the nodes of a network is
also related to other issues related to node properties. An example
is given by the eccentricity of a vertex v, denoted by e(v), which
is defined as the shortest path distance a given vertex has from
the farthest other node in the graph.

In order to understand the error behavior in the road network,
the values of betweenness and eccentricity have been computed
for each node of the urban graph. On the other hand, if the
topological indexes are computed on the whole road city graph,
also restricted traffic zones and marginally used roads should be
taken into account. Therefore, those indexes would not describe
the actual traffic network of the city. Thus, we only considered
the nodes and arcs involved in the traffic flow reconstruction.
Fig. 8 depicts the position of the computed highest values for
Fig. 8. In orange the node having the maximum betweenness value, while in
green the node having the maximum eccentricity value. The main restricted
traffic zone is depicted in the center of the city in gray. . (For interpretation of
the references to color in this figure legend, the reader is referred to the web
version of this article.)

Table 2
Multilinear regression results.
Coefficient Estimate Std. Error t-value p-value

betweenness β 0.80224 0.13097 6.125 <0.05
eccentricity γ 0.23256 0.02657 8.752 <0.05

Residual standard error: 0.1806.
Multiple R-squared: 0.6836.
Adjusted R-squared: 0.6786.
F-statistic: 136.1.
p-value: < 2.2e−16.

betweenness and eccentricity metrics, in orange and green, respec-
ively. Please note that betweenness is located in proximity of
ne of the typical areas where traffic congestion often occurs. On
he other hand, nodes having high eccentricity are located in the
ecentralized zones of the urban graph admitting more distance
rom the other side of the network.

Thus, a multilinear regression model has been conceived to
erify the presence of an effective relationship between the RMSE
nd metrics reported in Table 2, and to identify a model that
an put in relationship the identified feature with the error func-
ion as RMSE. The parameters of the resulting model have been
eported in Table 2.

The identified model is Yi = βxi + γ zi where Yi, xi, zi are the
MSE, betweenness and eccentricity, respectively. The β coeffi-
ient is the expected change in Y associated with a 1-unit increase
n the value of x at the same value of z; the γ coefficient is the
xpected change in Y associated with a 1-unit increase in the
alue of z at the same value of x. The results show that both
etweenness and eccentricity are statistically significant (with a
-value < 0.05). The R squared of the model is equal to 0.68,
hich means that the model explains 68% of the variability of
he response data around its mean. When supposing to consider
he betweenness as the unique metric of the model, then the
squared decreases to 0.48, so that the multilinear regression
odel is improved by means of the eccentricity values. The result
resented in this section is strongly different from the one in [40]
here only the relation between traffic flow and betweenness
entrality is considered. Therefore, we have identified a relevant
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Fig. 9. A graphical representation of the error distribution is presented. An
intense pigmentation denotes a higher error of the distribution of Fig. 5. The
typical road segments with high traffic flow are represented in Fig. 2 with a
snapshot of the actual service.

relationship between the RMSE and network topology. A general
representation of the Y over the considered urban map is de-
icted in Fig. 9, where locations having an intense pigmentation
re affected by a greater error model. It is easy to remark that
rban zones having greater errors are not those where traffic
s heavy. The typical road segments with high traffic flow are
epresented in Fig. 2 with a snapshot of the actual service. Thus,
omparing Figs. 2 and 9, it is evident that the critical values of the
rror function are not specifically located on segments with high
raffic, and neither on all cross points or close to the sensors. They
re more related to the critical topological points of network,
hich are specific nodal cross points.

. Experimental results

The computational speed of the solution depends on the di-
ension of the considered road network. In particular, as the
omputational complexity it is an O(H(V+U)) where: V is the
umber of nodes, U is the number of units and H is the number
f iterations. Since U is larger than V, then we definitively have
n O(HU).
Concerning the validation of our model, we have considered

n area of the metropolitan network of Florence constituted by
390 nodes (or intersections), 2730 road-segments and 130 traffic
ensors, as depicted in Fig. 2. The graph array structure has U
31217 elements which represent the total amount of units

ccurring in the network, that is, the total number of units in
ensity arrays.
For example, we can observe the results in Table 3 showing

ome execution times (in seconds) for different number of itera-
ions related to the mentioned approaches. Each execution time
as been obtained as mean value of results taken on 30 distinct
xecutions in both cases: (CPU) 20 cores at 2.20 GHz, 128 GB
am; (GPU) Graphics device GPU NVIDIA of 12 GB.
Of course, the use of such data structures requires a supple-

ental time for their wrapping/unwrapping which does not alter
he above dissertation.

An additional analysis related to the mentioned approaches
as been also conducted. So that, fixing the number of iterations
eeded for the model computation we have compared the com-
utational speed with CPU and GPU via parallel structures. Some
esults concerning this topic can be sketched in Table 4 where
xecution times are presented adopting 1, 10, 20, 30 sensor nodes
here the related errors are estimated, respectively, via parallel
tructures.
Table 3
Algorithm execution times (in seconds) according to different number of itera-
tions. Such comparison is performed on a machine having 20 cores at 2.20 GHz
20, 128 GB Ram, Graphics device GPU NVIDIA Titan XP.
Execution time # of iterations

10 100 200 300

CPU (in sec) 4.85 61.48 150.62 366.02
GPU (in sec) 0.63 3.33 6.46 9.56

Table 4
Algorithms’ execution times (in seconds) using GPUs according to different
sensors’ numbers. A such comparison is performed on a machine having 20
cores at 2.20 GHz 20, 128 GB Ram, Graphics device GPU NVIDIA Titan XP.
Execution time # of sensors

1 10 20 30

Using CPUs (in sec) 3.23 29.11 60.57 100.82
Using GPUs (in sec) 7.8 35.55 72.95 87.61

Due to this analysis, whenever a small dimension data struc-
ture is ingested in the GPUs architectures, then the computational
speed does not improve; thus, the desired advantages are related
to data structure having greater dimensions. Such behavior is a
common trend in the context of parallel computing approach via
GPUs where a breaking event appears (in our case, it is closed
to a data structure having about 780000 units). For our purpose,
such breaking event validates that the computation of the graph
array (having 31217 units) in real-time applications is carried out
via parallel approach using CPUs, while the computation of the
analysis error (having 4058210 units for each time observation)
is performed by GPUs architectures in order to improve the
computational speed of the presented model.

Considering for example H = 250, the computation of the
error analysis presented in Section 5 takes about few minutes via
GPU parallel computation for each observed time. Since the data
under observation for this analysis take into account thousands of
samples, then the execution time needed for this analysis would
require some years by using a sequential approach on CPU.

7. Conclusions

The real time status of road network in terms of traffic flow
reconstruction is receiving a higher attention due to its relevance
for a number of smart services such as: routing, planning, dy-
namic tuning services, healthy walk, etc. The precise traffic flow
status may become fundamental to save life for rescue teams,
police departments, fire brigades, and ambulances. Both costs
and needed precision have also constrained local governments
to exploit sensor networks, which are in any case limited by the
new number of sensors that can be acquired and maintained.
The solution presented in this paper is based on data coming
from scattered traffic flow sensors, which can be placed at cross
junctions, as well as in the road segments. It has turned out to
produce traffic flow reconstructions with high precision, address-
ing at the same time (i) the traffic flow reconstruction problem
by solving PDE; (ii) the estimation of traffic flow distribution at
junctions with an approach that can be classified as a stochastic
relaxation. In the paper, and with a real time accessible service,
it has been also demonstrated that results can be obtained in real
time for large road networks exploiting tensor flow modeling and
GPU. Moreover, we have also characterized the error function for
the traffic flow reconstruction, thus proving its relationships with
road network features such as betweenness and eccentricity. The
spatial distribution of errors has highlighted that greater error
values are far from the most critical area where higher values of
traffic are registered. The main exploitable results of the solution
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proposed are mainly related to the access at a dense traffic
flow reconstruction. It can be used at the basis of many routing
and multimodal routing algorithm for final users, and for the
operators (taxi, fire brigade, police, ambulance, etc.). In addition,
a recent application exploited the traffic flow for predicting the
distribution of pollutant in the city. In turn, the prediction of
pollutant can be used to plan short walking with baby, training,
and biking in the city.

However, the presented model assumes that the suitable data
structure for the related urban network is unchanging, that is,
a given road is also considered in the computation when the
actually access is temporarily not permitted (for example, in case
of road maintenance) and the related percentage of turn is null.
A further research could investigate on a sort of dynamical road
network structure for the model in order to improve its compu-
tational cost. Another line of research could take into account the
integration of some additional data (if available) in the model, as
for example: traffic accidents, traffic light waiting times, etc.

The results presented in the paper has been obtained in the
context of Sii-Mobility national project on smart city transport
systems in Italy, a very large research project, and it is at present
exploited in a number of cities/regions across Europe (Firenze,
Pisa, Livorno, Modena, Santiago de Compostela) and is at the basis
of research projects (such as RESOLUTE, Snap4City, TRAFAIR of
the European Commission).
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